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Abstract: 

Previous papers have described an object tracking model of spatial cognition, in which animals build a 
Bayesian maximum likelihood model of the local 3-D space around them. This 3-D model is essential 
for controlling all physical movements. There has been large and sustained selection pressure to make 
it the most precise model possible, given the animal’s sense data. A tracking computation gives a  model 
of space almost as good as the Bayesian best possible model. To do so, it requires precise short-term 
spatial memory. Neural models of spatial memory have large random errors - too large to support the 
tracking model.  

An alternative to neural spatial memory is described, in which neurons may couple to a wave excitation 
in the brain, representing the 3-D space. Wave storage of positions can give high precision, fast 
response, and selective steering of sense data to pattern-recognition modules.  

Three lines of evidence support the wave hypothesis: (1) it has much better precision and speed than 
neural spatial memory, good enough to support object tracking;  (2) the central body of the insect 
brain, whose form is highly conserved across all insect species, is well suited to hold a wave; and (3) 
the mammalian thalamus, whose form is preserved across all mammal species, is well suited to hold a 
wave. Together, these lines of evidence support the wave hypothesis, compared to the neural synaptic 
alternative. The wave hypothesis merits further investigation. 

 

Keywords:  working model of spatial cognition; wave representation of 3-D space; errors on neural 
spatial memory; wave storage of spatial memory; Fourier transform; Hologram; insect central body; 
mammalian thalamus; brain energy consumption  
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1. Introduction 

Most work in neuroscience assumes that neurons 
communicate through synaptic connections; that 
information is represented by firing rates and synaptic 
strengths; and that only peripheral sensory neurons couple 
to physical inputs such as light. These are assumed in almost 
all computational models of the brain; I call them the neural 
synaptic assumption. 

This paper questions that assumption. It proposes that in 
any animal with complex sense data, some neurons in the 
brain interact with a wave excitation as transmitters and 
receivers. The physical nature of the wave is not known. Its 
computational role is to represent the three-dimensional 
locations of things around the animal, through a Fourier 
transform representation of space, as in a hologram. The 
wave excitation is a master map of the local space around 
the animal, and is used to plan and control physical 
movements – which is the first requirement for any animal 
brain. 

Why is there a need for a wave in the brain? Related papers 
[Worden 2020, 2024b] describe a working computational 
model of how animals build a Bayesian maximum likelihood 
3-D model of the local space around them – by tracking 
objects in space as they move relative to the animal. This 
allows animals to build a 3-D model of space from sense 
data of lower dimension, such as vision.  

The tracking computation works well, allowing an animal to 
build a precise 3-D spatial model, almost as good as the best 
possible Bayesian model. Tracking requires a fast and 
precise short-term memory for the locations of objects. 
Neural storage of 3-D locations, as stochastic firing rates, 
has large random errors – especially over small sub-second 
timescales. The working model of [Worden 2024b] shows 
that the precision and speed of neural short-term spatial 
memory is not sufficient to support effective object 
tracking. The tradeoff between speed and precision cannot 
be resolved. 

Even small animals move rapidly and skillfully, showing that 
they have good internal models of 3-D space. Something 

better than neural storage is required to support it. Wave 
storage of positions can do this – storing the 3-D positions 
of many independent objects with high precision, low 
spatial distortion, and fast response; sufficient to hold a 
precise 3-D model of local space. 

Considerations of memory precision and speed, as well as 
computational efficiency and simplicity, support the wave 
hypothesis. The paper proposes that wave storage of 3-D 
locations evolved when animals first had complex sense 
data and limbs, before the Cambrian era; and that it has been 
used since then.  

There is anatomical evidence for a wave excitation in the 
brain, in a wide range of species. The paper describes two 
lines of evidence: 

1. The Insect Central Body is one of the most 
complex and least understood parts of the insect 
brain [Strausfeld 2012; Heinze et al 2021]. Its shape 
is very well conserved across all insect species. I 
propose that the shape is conserved because it 
holds a wave excitation, integrating spatial 
information from all senses; and that a wave gives 
the most efficient form of spatial cognition within 
the limited resources of the insect brain. 

2. The Mammalian Thalamus: In a neural synaptic 
model of cognition, the anatomy of the thalamus 
does not make sense. The same synaptic 
connections could all be made using less brain 
energy if the thalamus ‘exploded’ with each 
thalamic nucleus migrating outwards towards the 
cortex, reducing the net length and energy costs of 
white matter. The compact round shape of the 
thalamus makes sense if it holds a wave excitation, 
representing the 3-D positions of things. There is 
other evidence that a wave in the thalamus holds 
three-dimensional spatial information. 

These three lines of evidence support the proposal of a wave 
excitation holding spatial information in all animal brains.  

The physical nature of the wave is not known.  It might be 
determined by a multi-disciplinary approach, with 
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contributions from biophysics, genetics and proteomics, 
experimental neuroscience, and other fields. 

If the wave hypothesis were confirmed, it would be a 
paradigm shift in neuroscience. 

2. The Primacy of Spatial Cognition 

Spatial cognition is sometimes seen as one among many 
different aspects of cognition – alongside others such as 
memory, learning, pattern recognition, foraging, 
reproductive behaviour, emotion and language.  

This paper suggests that spatial cognition is more than that. 
It is the first thing that brains need to do; all brains are 
required to do it very well. It is in some sense the core 
function of brains, the centre of all other forms of cognition. 
If the brain is like an atom, spatial cognition is the nucleus. 
There are still essentially working neural models of spatial 
cognition. It is an urgent priority for neuroscience to 
understand why spatial cognition has proved so difficult, 
and to build working models of how it is done. 

Animals are living beings with muscles, that move in the 
world. They move at every moment of their waking lives, 
and they do so very skillfully. The fitness penalties of 
unskilled movements are always present, and can be 
terminally serious. Brains need to control every movement, 
and they can only do this by understanding the locations of 
things – including the animal’s own limbs – in the three-
dimensional space around the animal.  

The selection pressure on any cognitive faculty is 
proportional to how often it is needed in a lifetime, and to 
the fitness penalties for not doing it well.  As spatial 
cognition is essential at every moment of the day, there has 
been extreme and sustained selection pressure on animal 
brains since the Cambrian era, to do better 3-D spatial 
cognition. The evidence is that they do it very well. Spatial 
cognition is the core requirement that has shaped animal 
brains; it is the primary function of a brain. It is an urgent 
requirement to understand how spatial cognition is done. 

3. Requirements for Spatial Cognition 

There is a common set of requirements for spatial cognition 
in any animal which has complex sense data – for instance, 
which has powerful eyes, or capable limbs. These 
requirements are: 

1. To represent positions in three dimensions: 
The space around any animal is three-dimensional, 
and movement is movement in three dimensions. 
It follows that a faithful internal model of reality 
needs to be three-dimensional. 

2. To represent positions precisely: A more precise 
internal model of reality leads to better choices of 
action and greater fitness. The resolution of any 
species’ eyes gives one measure of the precision 

required in its brain; there would be little purpose 
in having an eye with spatial resolution of one part 
in a thousand, if the brain could not represent 3-D 
reality with the same precision. 

3. To represent positions over a wide range of 
distance scales: Any species needs to represent 
reality over a very wide range of distance scales – 
from the large distances involved in locomotion 
and predator avoidance, down to the smallest 
distances involved in fine control of limbs, 
manipulation and recognition of small objects. 

4. Rapid response to change: Changes in local 
surroundings can happen in a fraction of a second. 
An immediate and appropriate response may be 
needed, in order to survive. 

5. Multi-sensory integration: Information about 
any external thing comes from several senses 
including vision, proprioception and sound. The 
brain needs to integrate these different sources to 
make one maximum likelihood model of the world. 

6. Detection of Motion: It is important for animals 
to detect what is moving in their surroundings; for 
instance, it may be food, or may be a threat. To do 
this, direct use of the visual field is of limited utility, 
because of apparent motion in the visual field 
caused by the animal’s own motion. A 3-D model 
in allocentric space is a gold standard for 
determining true motion. 

7. Spatial Steering and Binding: To classify things 
in space as accurately as possible requires the 
integration of all information coming from the 
same spatial location, because it is likely to come 
from the same thing. Information of different 
modalities needs to be bound together; it needs to 
be routed or steered to the same recognition 
module in the brain. 

8. Classifying objects and events: To decide what 
to do next, an animal needs to rapidly classify things 
or events around it into types, using sense data of 
all modalities – to know what it can do with any 
thing, or what the thing might do to it. 

9. Fast learning: The classifications of things and 
events are not all built into the brain by natural 
selection; they must be learned, and learned within 
the short timeframe of the animal’s life. This 
requires learning from a small number of learning 
examples  - unlike the slow learning done by deep 
neural nets. 

10. Spatially invariant learning: An animal must 
learn to classify any object, wherever that object 
appears in its surroundings. For this, it must learn 
from examples which occur in different places and 
orientations relative to itself. 

11. Fast learning of effective movements: Motion is 
too variable to be fully innate. Movements must be 
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learned within a small part of the animal’s expected 
lifetime. 

These requirements exert strong selection pressures on the 
evolution of brains. It is not sufficient for brains just to do 
them to some basic standard; brains must do them as well 
as possible. We expect these requirements to be very well 
met (and empirically, they are). They are competitive 
requirements; it is not sufficient just to meet a requirement 
‘well enough’. If species A meets a requirement better than 
species B, then A will out-compete B, and B will not survive. 
Evolution is an arms race for brains. 

The requirements (1) – (5) mainly concern understanding 3-
D space well enough to control physical movements – 
something animals do very well, because a failure to move 
skillfully could cause death or injury at any moment, so there 
is very strong selection pressure to do it well. The 
requirements (6) – (11) relate to a broader understanding of 
their surroundings – which may not lead to such extreme 
selection pressures, but nevertheless gives rise to strong 
competitive selection pressures. 

Even insect brains, which typically contain less than a 
million neurons, meet the requirements (1) – (11), and meet 
them well. We are not just looking for brain designs that 
meet the requirements; we are looking for designs which 
meet them efficiently and meet them well, using small 
numbers of neurons. 

4. An Object Tracking Model of 3-D 
Spatial Cognition 

The Bayesian cognition hypothesis, that animals build 
Bayesian internal models of the world from their sense data, 
has been successful in many cognitive domains. Bayesian 
cognition gives the best possible fitness, as can be shown 
from an evolutionary viewpoint. In [Worden 1995, 2024a] I 
showed that the computational requirement for any animal 
brain (at Marr’s [1982] computational level 1) is to choose 
actions as if using an equation, the Requirement Equation. 
This equation resembles Bayes’ theorem, with extra factors 
depending on actions and their fitness payoffs. The resulting 
choice of actions gives greater fitness than any other choice, 
and so the evolution of brains will converge towards this 
form of cognition. In complex domains, it requires animals 
to build Bayesian maximum likelihood models of the 
current situation. 

For spatial cognition, it requires animals to build a 3-D 
spatial model of the space surrounding them, using all 
available sense data, and obeying the constraints of 
Euclidean geometry, kinematics and physics. These 
constraints have been true for all evolutionary time, and 
have exerted constant selection pressures on brains 
throughout all that time; so the constraints can be expected 
to be reflected in animal brains with high precision. Animal 

movement exploits the laws of physics very well; it is 
controlled from  a model of space which obeys those laws. 

Full Bayesian computation of a maximum likelihood spatial 
model is not tractable in animal brains in real time, but it can 
be computed on digital computers. [Worden 2024b]  
describes a working computation of a Bayesian optimal 3-D 
spatial model, for bees (using vision and Shape from 
Motion) and bats (using echo-location and Shape From 
Motion). This model, at Marr’s [1982] level 2, requires the 
animal to use not just current sense data, but to combine it 
with recent sense data to build the 3-D model of space. This 
allows the construction of an accurate spatial model, with 
precision comparable to (and sometimes better than) the 
animal’s sense data.  It is expensive to compute, and it is not 
likely that animals compute full Bayesian 3-D spatial 
models. 

[Worden 2024b] describes a dynamical object tracking 
model for bees and bats. In this model, the animal does not 
retain recent sense data, but only uses current sense data 
(vision or echo-location) to update its most recent ‘tracking’ 
estimates of object positions, in an allocentric frame of 
reference, where most objects are stationary. This is easier 
to compute than the full Bayesian 3-D model, and gives a 
model of very similar precision and quality. It is a possible 
candidate for how animals model the space around them, to 
control their movements. 

While the tracking model is fast and economical, it requires 
the storage of recent tracked position estimates; so it 
requires a three-dimensional spatial short-term memory. 
The tracking model program shows that this short-term 
memory needs to have high spatial precision (errors in 
spatial displacements of the order of 1% or less) in order to 
support effective tracking, and to support functions which 
depend on tracking, such as the detection of moving 
objects. 

There has been little consideration of how a neural short-
term 3-D spatial memory could do this. As discussed in the 
next section, it is likely that neural spatial memory would not 
have sufficient precision to support the tracking model. 

5. Neural Spatial Memory: Speed and 
Precision 

How could neural firing rates represent three-dimensional 
information, as is required for short-term neural spatial 
memory? I consider three options: 

A. Represent two of the dimensions by position in a 
2-D neural sheet, and represent the third dimension 
by firing rates at locations in the sheet – like a visual 
cortex with depth 

B. Represent all three dimensions of any position by 
neural firing rates 
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C. Represent all three dimensions by positions of 
active neurons in a 3-D ‘clump’ of neurons. 

Option (C) is unattractive for several reasons. To give high 
spatial resolution, it would require to be a large and 
prominent clump of neurons, such as has not been observed 
in brains. It would also pose serious problems of neural 
connectivity, for neurons in the middle of the 3-D clump. 

Option (A) potentially gives high resolution in two of the 
dimensions, represented by positions in the sheet. A 
possible drawback is that for motion detection, it would be 
useful to represent space in an allocentric frame of 
reference, where most things do not move; but the visual 
cortex does not use such a frame, so the spatial memory 
would need to be somewhere else in the brain.  

Option B raises questions about how the three dimensions 
are defined (in what kind of coordinate system?); and then, 
how commonly used operations, such as vector addition of 
displacements, would be computed. It is hard to devise a 
simple representation of three-dimensional space by neural 
firing rates, and then to use it to do spatial computations 
simply. This issue of computational complexity also arises 
in option (A); there is little to say about it, except that 
complex forms of processing appear to be needed, and that 
they have not yet been considered. 

In the tracking model, memory noise as little as 1 part in 40 
degrades motion detection down to near-random levels, and 
the precision required to support tracking is of the order of 
1 part in 100. Could a neural spatial memory give these levels 
of precision? 

Quantities such as components of vectors can be 
represented by stochastic neural firing rates. If a single 
neuron fires stochastically with N action potentials per 
second, in one second it represents information with 
precision approximately one part in √N. To get a precision 
of the order of 1% (as appears to be required to support 
motion detection) in one second would require N = 10,000, 
which is an unrealistically high firing rate. Typical neural 
firing rates are less than 100 pulses per second. 

The problem is more serious because animal brains need to 
choose physical actions faster than once per second. For a 
small mammal, the required times may be of the order of 
100 milliseconds. For insects, whose vision is 5 times faster 
than our own [Chittka 2022], the timescales may be a few 
tens of milliseconds. It is only possible to fit a small number 
of neural action potentials into this time – giving very poor 
precision. 

To represent spatial coordinates by stochastic single neuron 
firing rates requires an impossible tradeoff between speed 
and precision. It cannot be done. 

We must therefore look for other solutions. One possible 
approach is parallelism, to get higher firing rates. Using the 
numbers above, a very high degree of parallelism would be 

required to get the required aggregate firing rate – perhaps 
100 parallel neurons to represent one dimension of one 
position. As we know that brains represent the positions of 
many objects at once, this soon scales up to prohibitive 
numbers of neurons – particularly in insect brains, which 
have fewer than a million neurons in total.  

Another approach would be to use some non-stochastic 
firing pattern, such as regular bursts. Another approach 
would be to use a more complex encoding of distances, 
perhaps using small linked groups of neurons to encode 
position coordinates in multiple firing rates. 

A drawback of all these approaches is that they make an 
already complex problem – how to do spatial computations, 
such as vector additions – yet more complex. Some of the 
possible approaches would cause distinctive neural 
connectivity or firing patterns, which might be looked for. 

The current conclusion is that neuronal short-term memory 
cannot give sufficient precision and speed to support three-
dimensional object tracking (or any similar model of 3-D 
object location), at the levels of precision and speed which 
small animals routinely attain. It is of course possible that 
someone will propose better forms of neural spatial 
memory, to overcome these problems. 

6. Wave Storage of Spatial Information 

This section describes an alternative to a neural 
implementation of spatial memory. 

For any computation, if the physical computing mechanism 
matches the physics of what is computed, the computation 
can be simpler, more economical and more precise. You can 
‘let the physics do the computing’ – directly, rather than 
building some complex device to compute indirectly. This 
principle was responsible for the early uses of analogue 
computers, before digital electronics became predominant. 

The same principle can be applied in spatial cognition. If 
there is some approximately spherical volume in the brain, 
which can hold wave excitations, then each wave can have 
a different wave vector, or k-vector. This is a three-
dimensional vector which describes both a wavelength and 
a direction of wave motion (orthogonal to the wave front). 
If the physics of the wave is linear, the same volume can 
hold many independent waves, with different k vectors – 
which do not interfere with one another. 

A wave can be used to store the independent locations of 
many objects – objects with different locations r, related to 
the wave vectors by k=αr, where α is a constant.  If we 
assume that: 

• Each wave excitation can persist for short periods 
(fractions of a second) 

• The minimum possible wavelength λ is small 
compared to the diameter D of the volume (so 
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there is a large range of possible k-vectors, in all 
directions) 

• Neurons can couple selectively to waves of 
different wavelength and direction, as transmitters 
and receivers (e.g. one neuron might have its wave 
receptors or transmitters aligned and spaced with 
the wave fronts, to be selective near one k-vector) 

then neurons could use the wave as a short-term memory 
for the locations of many objects. This form of spatial 
memory could have major benefits over storage in neural 
firing rates: 

1. The three dimensions of the wave vector 
correspond directly to the three dimensions of 
object positions; there is no need for any preferred 
direction, or for the representation to be 
asymmetric between directions. There is no need to 
choose a coordinate system. It is a simple and direct 
representation of positions. 

2. A large number of k-vectors (independent object 
positions) - of the order of (D/λ)3 - can be stored 
in the same wave volume. 

3. The precision of each object location in any 
dimension is approximately one part in (D/λ) – 
which can be better than one part in 100, as appears 
to be required for effective motion detection. 

4. As in a hologram (which works by the same 
principle) there is very little spatial distortion of 
positions. 

5. In principle, the wave can be updated very fast, say 
within a few milliseconds. There is no hard tradeoff 
between speed and precision. 

These are major benefits, possibly overcoming the serious  
problems with neural storage described in the previous 
section. They are enough to make the tracking model of 
spatial cognition workable – which it seems not to be, with 
purely neural storage of positions. 

If spatial positions are stored in a wave in the brain, there 
must be some minimum possible wavelength λmin that 
neurons can couple to; which implies that there is a 
maximum k-vector, and a maximum distance that can be 
represented. This is a problem for representing very large 
distances, which animals sometimes need to do. The wave 
excitation cannot represent Euclidean space directly, but 
must represent some transform of Euclidean space, 
designed to minimise geometric distortions at small 
distances. In this respect, projective transforms of space 
[Rudrauf et al 2017, 2022] are particularly useful, as they 
preserve straight lines; and straight lines are important for 
controlling motion and recognizing shapes. So the wave 
storage may use some near-projective transform of 
Euclidean space. 

This may be why we see the stars as a spherical canopy, and 
why perception has minor distortions of Euclidean 
geometry, especially at large distances. 

Storage in a wave has potential for a spatial short-term 
memory, which could be greatly superior to neural memory. 
Many details remain to be worked out – including: 

a) What is the physical nature of the wave? 
b) How can the wave persist for the necessary times? 
c) What is the source of energy for the wave? 
d) How do neurons couple to the wave? What genes 

and proteins are involved? 
e) Can neurons have steerable coupling to the wave? 
f) Where in the brain does the wave reside? 

There are possible answers for question (f), described in the 
following two sections. 

7. The Insect Central Body 

Insect brains typically have volume less than one cubic 
millimetre, with less than a million neurons – yet insects 
have a range of complex and adaptive behaviour. It is no 
longer thought that insects are only capable of stereotyped 
pre-programmed actions, or that they cannot make fine 
discriminations about their surroundings. They can do these 
things, and do it very fast. 

It follows that insects have capable spatial cognition, 
meeting the requirements of section 3 within a very small 
brain. 

The insect central body is, as its name implies, a small central 
region found in all insect brains. It has been much studied 
and is linked with a wide variety of functions, including 
navigation and locomotion. It is innervated by neurons 
originating from nearly all sensory modalities, and it is 
thought to play a role in multi-sensory integration. Because 
of its important roles and its complexity, Strausfeld [2012] 
has called it a ‘brain within a brain’. While its neural circuitry 
has been extensively studied, there are few computational 
models of its functioning. 

The central body has  features which may imply that it is the 
site of a wave excitation in the brain. If it is so, that is 
consistent with a role for the central body as a spatial 
blackboard of the insect brain, routing and steering multi-
sensory information between other parts of the brain, to 
assist in building a Bayesian maximum likelihood 3D model 
of the insect’s surroundings. 

The main evidence for a wave is the remarkable  constancy 
of the shape of the central body across all insect species, 
some of which diverged from others over 400 million years 
ago. This constant shape would not be expected if the role 
of the central body was just to hold synaptic connections, 
because many different and distorted shapes could give the 
same neural connections. One would expect the central 
body, like most parts of insect brains, to have different 
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shapes in different species, to optimize the use of space and 
to minimize neural connection lengths according to species-
specific requirements and neighboring brain regions. 

A shape which is highly preserved across species may imply 
that the shape serves some physical purpose, as well as the 
connection of synapses. One purpose is to act as a container 
for a wave excitation in three dimensions. If the excitation 
needs to hold comparable numbers of waves in all three 
dimensions (to represent all three dimensions of positions 
with comparably good spatial resolution), one would expect 
the shape to be very approximately spherical – as the insect 
central body is. 

The central body (CB) consists of the Fan-shaped body (FB) 
which is next to, and partially surrounds, the Ellipsoidal 
Body (EB).  These can be seen in a range of histological 
preparations. All preparations show a remarkably constant 
central body shape across insect species, as is illustrated in 
[Strausfeld 2012]. Figure 1 from [Strausfeld 2012] shows the 
central body of a honey bee brain. 

 

 

 

Figure 1: Central Body in the brain of a honey bee 

The central body can also be viewed in three dimensions for 
approximately 20 insect species in the insect Brain Database 
[https://insectbraindb.org]. 3-D models of insect brains 
and brain parts can be downloaded from this site. 

The outline shapes of the FB and EB, from the database, 
are shown side by side for 8 species, in figures 2 and 3: 

 

Figure 2: Outlines of the FB and EB in four insect species, from the 
Insect Brain Database []. Units of length are microns (10-6 M), and 

volumes are in units of 1,000 cubic microns 

 

Figure 3: Outlines of the FB and EB in four insect species, from the 
Insect Brain Database[] . Units of length are microns(10-6 M), and 

volumes are in units of 1,000 cubic microns 

 

Species are shown in order of increasing total brain volume, 
from top to bottom. Total brain volume goes from 
17,000,000 cubic microns (Jewel Wasp) to 660,000,000 
cubic microns, or 0.7 cubic millimetre (Bumble bee). 

For each species, the volumes of the central body are 
shown, in units of 1,000 cubic microns.  Typically, the 
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central body only occupies between 0.5% and 2% of the 
total insect brain volume; other parts of the brain, such as 
the optic lobes and the mushroom bodies, are much larger. 

The pictures show a two-dimensional slice of each CB. To 
quantify the three-dimensional shape constancy across 
species of the central body, I have defined a measure of the 
shape constancy of any brain part between any two insect 
species, by the procedure: 

• Normalise the brain part, scaling it so it has the 
same volume in both species. 

• Rotate the part for each species so that they both 
have the same orientation, defined by the major and 
minor axes of their moment of inertia tensors (the 
second moments of the volume distribution). This 
orients them as shown in the diagrams, with major 
axis from left to right (x), the next major axis 
vertically (y), and the smallest axis (z) towards the 
viewer. 

• Measure the shared volume S which is inside the 
parts for both species, and the individual volume I 
which is in a part for one species but not in the 
other. 

• There is a four-fold ambiguity, of a 180o rotation 
about any axis. Choose the ambiguity to minimise 
I. 

• The measure of shape similarity is I/S. 

Using 3D models from the Insect Brain Database, I have 
measured the shape constancy of the central body for 18 
species, taking the average of I/S for all pairs of species. For 
comparison, I have made the same measure for some other 
parts of the insect brain. The results are shown in the table: 

 

Brain region Number of 
species 

Mean disparity  
I/S per species 
pair (percent) 

Fan-shaped body + 
Ellipsoidal body  
(central body) 15 26 

Parabrachial Bridge  
(central complex) 14 257 

Peduncle  
(mushroom body) 15 184 

Medial lobe  
(mushroom body) 13 129 

Calyces  
(mushroom body) 11 95 

Lamina (optic lobe) 8 145 

Lobula (optic lobe) 11 44 

Lobula plate (optic lobe) 10 55 

Medulla (optic lobe) 14 27 

Antennal lobe 16 40 

Lateral accessory lobe 8 42 

BU (lateral complex) 10 41 

Table 1: Shape disparities for different parts of the insect brain, 
computed from the models in the Insect brain database.  The number 
of species varies with the brain part because not all species included data 
for all brain parts. 

The table confirms numerically what is evident visually – 
that the central body, while not having an entirely constant 
shape across species, is more constant in shape than any 
other part of the insect brain. 

The only other part of the brain which has similar constancy 
to the central body is the medulla in the optic lobe – which, 
interestingly, has a similar shape to the central body. Being 
closely related to the eye, it probably has a mainly 
retinotopic neural organization. 

Neurons in insect brains are often unipolar, having a cell 
body with one emerging process branching to axon and 
dendrite. Many of the cell bodies are external to the bulk of 
the brain. There are very few cell bodies in the central body; 
but it is innervated by many different types of neuron, 
implying that it has complex and important functions. 

Many of the neurons that innervate the CB have synapses 
widely distributed through its volume. If these synapses are 
closely associated with some sub-neural unit which 
transmits or receives a wave, then the widely distributed 
units can define a wave vector with high spatial resolution. 
This is a requirement for representing three-dimensional 
space with high resolution. Widely spaced synapses are 
consistent with representation of space by a wave. 

Note that the linear dimensions of the central body vary 
only by about a factor 2.5 (from 112μm to 287 μm), while 
total brain volumes vary by a factor of 40. In the wave 
model, it is the linear dimension of the central body that 
determines its spatial resolution. The fairly constant sizes of 
the insect central body are consistent with the wave model. 

8. The Mammalian Thalamus 

The thalamus occupies a central position in the mammalian 
brain, and is richly interconnected to many cortical areas. It 
has been proposed that the thalamus plays a role in 
integrating the functions of those areas, acting as a 
blackboard [Baars 1988; Mumford 1993; Worden, Bennett 
and Neascu 2021].  

This section explores the hypothesis that the thalamus holds 
a wave excitation, as was proposed for the insect central 
body in the previous section. Several pieces of evidence 
support this hypothesis. Some features of the thalamus 
cannot be accounted for without a wave. 

The first evidence is the shape of the thalamus. Across many 
species, the thalamus has a well preserved and near-spherical 
shape – a form which is well suited to holding a wave 
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excitation, with comparable numbers of wavelengths in 
each of its three dimensions. This regular near-spherical 
shape contrasts with other parts of the mammalian brain, 
such as the hippocampus or the cerebral cortex. Their 
irregular shapes are sufficient to hold neural connections, 
which depend only on connection topology, not geometry. 
Most parts of the brain have irregular shapes, dictated by 

space requirements and their impinging neighbours. The 
thalamus is a striking exception, and it must be for a reason. 
That reason may be the need to hold waves. 

The shape and volume of the thalamus in several species is 
shown in figure 4, taken from [Hailey & Krubitzer 2019]. 

 

 

Figure 4: Shape and size of the thalamus in various species, from [Hailey & Krubitzer 2019] 

 

With the apparent exception of the marmoset, the visible 
shapes of the thalamus (green) are consistent with each 
thalamus being approximately spherical, with the two 
thalami joined at the centre line of the brain. This is in sharp 
contrast to the convoluted variable form of the neocortex 
(orange) 

The second piece of evidence comes from considerations of 
brain energy consumption, through the lengths of axons. 
The thalamus has rich two-way connections to almost all 
parts of the cortex, and those connections have an energy 
cost – proportional to the aggregate length of the myelinated 
axons.  The thalamus itself consists of a number of thalamic 

nuclei – and the neural interconnections between thalamic 
nuclei are weak or non-existent [Sherman & Guillery 2007]. 
Why do thalamic nuclei need to be close to each other, if 
they have no interconnections? The aggregate lengths of 
axons between the thalamus and the cortex could be 
reduced (and brain energy saved) if the different thalamic 
nuclei were to separate, so each thalamic nucleus could 
migrate outwards towards the cortex – reducing aggregate 
axon lengths. All neural synaptic connections would be 
preserved – so in a neural synaptic model of cognition, the 
same computations could all be done. 

Figure 4 shows that in all species except possibly the 
hedgehog, there is a gap between the thalamus and the 
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cortex – a gap which is traversed by cortico-thalamic and 
thalamo-cortical axons. There are potential energy savings 
from reduced axon length, if thalamic nuclei were to migrate 
away from one another, outwards towards cortex. 

In the case of the human thalamus, [Worden 2010] I have 
calculated the possible energy reduction from this 
‘exploding thalamus’ and it is a significant energy saving. 
Brain energy costs for mammals are very important; so if 
they could be reduced by exploding the thalamus, evolution 
would surely have done so. Why do the thalamic nuclei stay 
together? 

There is one good reason for thalamic nuclei to stay together 
– because they all need to be immersed in the same wave 
excitation. The central position and form of the thalamus is 
strong evidence for the wave hypothesis. 

On a neural synaptic model of cognition, the division of the 
thalamus into nuclei which hardly connect to one another is 
ill-designed to assist in any integrative function of the 
thalamus, like a blackboard – whereas in the wave model, 
different thalamic nuclei communicate through the wave. 

A third line of evidence in support of the wave hypothesis 
comes from the thalamic reticular nucleus (TRN). This has 
a very distinctive shape, of a thin shell surrounding the 
dorsal thalamus. In terms of brain energy consumption, this 
shape does not make sense. Energy could be saved if, 
instead of being an extended thin shell, the TRN was more 
compact and moved some distance towards the centre of 
the thalamus [Worden 2014]. 

However, in the wave hypothesis, the shape of the TRN 
may make sense. A thin shell, surrounding the volume 
containing the wave, may be a transmitter or receiver of the 
wave. It is hard to find any other good reason for the shell-
like form of the TRN. 

Evidence that the role of the thalamus is largely concerned 
with spatial cognition also comes from the kinds of sense 
data passing through the thalamus. The thalamus is a relay 
for sense data of nearly all modalities on its way to the cortex 
– that is, for all sensory modalities except olfaction. 
Olfactory data is of little use in finding the precise locations 
of things in three dimensions – which may be why it does 
not pass through the thalamus. This links to the wave 
hypothesis because, as described in section 7, a wave 
excitation is well suited to represent three-dimensional 
spatial information. 

Figure 4 shows that for most mammalian species, the 
thalamus occupies only a small percent of total brain 
volume, between 1/5 and 1/50 of cortical volume; and the 
volume of the thalamus scales as (cortex volume)0.8 [Hailey 
& Krubitzer 2019]. This is consistent with the thalamus 
carrying out its function efficiently - with the required 
resources scaling only modestly with increasing 
requirements, as they do in the wave model, but not in the 

synaptic model. As with the insect central body, the linear 
dimensions of different species thalami are broadly 
consistent with the wave hypothesis. 

Further evidence comes from the well-documented relay 
function of the thalamus. Why is the thalamus a relay for 
most kinds of sense data? What value is added by its relay 
function? How does it repay the extra energy costs of sense 
data having to take a longer path to the cortex through the 
thalamus, and the extra delay of relay neurons firing? 

The wave model gives a good rationale for the thalamic relay 
function. If the thalamic wave holds a 3D map of local 
reality, it is important to update the map as fast as possible. 
When sense data arrives at a primary relay of the thalamus 
– such as the Lateral Geniculate Nucleus (LGN) – it is not 
only relayed onwards to the visual cortex, but it is also used  
to update the wave model immediately, using the pre-
existing estimate of depth for that region of the visual field. 
This means that the wave model of local 3D space is 
updated by incoming sense data as fast as it possibly can be. 
That is the reason why incoming sense data is diverted 
through the thalamus on its way to the cortex. This is 
illustrated below in figure 5. 

 

 

Figure 5: Roles of thalamic nuclei in spatial cognition. Green arrows 
represent cortico-thalamic and thalamo-cortical axons. Red arrows 

denote transmission and reception of the thalamic wave, representing 
3D space. 

In this figure, incoming sense data arrives at first order 
thalamic nuclei such as the LGN. From there it is passed to 
knowledge sources at the lower levels of the cortical 
hierarchy, such as stereopsis (St) and shape from motion 
(SM). These knowledge sources estimate the depth of the 
stimulus, which is passed back (solid green arrows) to 
transmitters in the LGN, which create the wave 
representation of space (left-hand thick red arrow) from 
incoming visual data. Higher order thalamic nuclei such as 
the Pulvinar have similar two-way links to higher levels of 
the cortical hierarchy (dashed green arrows), and contribute 
to the wave model (right-hand thick red arrow). 

St

3-D Wave Model

Hierarchy

SM

First Order Nuclei Higher Order Nuclei

Blackboard

Sense Data
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There is an approximate anatomical consistency between 
primary thalamic nuclei, such as the LGN, and the wave 
model of section 9. The LGN has laminae of neurons with 
retina-like organization in each lamina. If each neuron in a 
lamina controls a transmitter region, the orientation of 
overlapping transmitter regions in the lamina is 
approximately that needed to project a wave to the centre 
of the thalamus, and control its two dimensions by its source 
in the retina, with the third dimension (depth) controlled by 
frequency tuning of the transmitter. Some phase steering of 
transmitters is still needed.  The presence of two or more 
laminae (as in most mammals) may help to project the wave 
towards the centre of the thalamus, rather than away from 
it. 

The ultrastructure of the thalamus is notable for the 
presence of synaptic glomeruli – clusters of synapses, which 
are consistent with multiple synapses playing a role in 
steering wave receptor units in the thalamus by variable 
phase delays. 

The complexity of thalamic glomeruli suggests that some 
complex computation is done inside  them, and they are not 
just passive relays between neuron cell bodies which do the 
computational work, as in the usual McCulloch-Pitts-like 
model of the neuron. Figure 6 shows a 3D reconstruction 
of a glomerulus from electron microscopy, from [Spacek & 
Lieberman, 1974] 

 

Figure 6: Graphic reconstruction of a thalamic glomerulus, from 
[Spacek & Lieberman 1974] 

9. Spatial Steering and Binding 

This section focuses on the requirements (7) – (10) of 
section 3: 

7. Spatial Steering and Binding 
8. Classifying objects and events:  
9. Fast learning:  
10. Spatially invariant learning:  

Taken together, these requirements are very important, and 
they depend on an internal model of 3-D space. Animals 
need to know not only the locations of things in space, so 
they can move skillfully in relation to them. They also need 
to know what things are – to infer what they are likely to do, 
or can be used for. Animals need to classify the objects 
around them into types. This is a pattern recognition 
problem, and it is spatially invariant pattern recognition. The 
same object must be recognized, wherever it is in the local 
space around the animal. 

Spatially invariant pattern recognition could be done by a 
brute force neural net approach, but it would be very 
inefficient – particularly in the very large learning times, 
typically requiring many more learning examples than an 
animal experiences in its lifetime. Animals need something 
much more efficient, and it appears (e.g. from cortical 
neuroanatomy) that they use small pattern learning and 
recognition modules, located in different parts of the brain. 

This leads to the requirement (7), for spatial steering and 
binding. How are all the sense data, needed to recognize 
some object, steered from sense organs to a small learning 
module? How are sense data of different modalities routed 
and bound together, whatever their origin in space? 

The sense data that need to be routed and bound together 
all come from the same region in 3-D space, because an 
object is likely to occupy some small region of space. So 
spatial steering is required, It is likely that the animal’s 
internal 3-D spatial model plays an important role in sensory 
signal steering and binding. How does it do so? 

There are purely neural models of signal steering, by 
branching switchable connections between neurons. This is 
illustrated (for one spatial dimension) in figure 7 below. 

 

Figure 7: A Fan-in/fan-out design for spatial steering and binding. 

....................

....
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The line of points on the left denotes sensory inputs – say, 
a one-dimensional visual field. A and B denote regions in 
the field. The groups of points P1 and P2 on the left each 
denote a pattern recognition and learning module. The lines 
across the diagram denote selective pathways of sense data 
to modules. Somewhere along these pathways there are 
switchable neurons or synapses – which are switched off for 
nearly all the time, but can be switched on to make a very 
selective path from sense data to a pattern recognition unit. 
(having a neural pathway which is switched off for nearly all 
the time is in itself inefficient) 

This is a fan-in/fan-out design because: 

• Sense data needs to fan out from region A to any 
module such as P1 or P2 which may recognize a 
pattern in the data. 

• Sense data needs to fan in to any module such as 
P2, from different regions such as A or B in the 
input field. 

While these architectures have been proposed, in one and 
sometimes two dimensions, the example models have 
generally been on a small scale, and have not addressed the 
issues of scaling (in the numbers of neurons and switchable 
synapses) which would be required to apply the models to 
the whole 3-D spatial model. I suggest that these issues of 
scaling are very serious, and rapidly lead to prohibitive 
numbers of neurons and synapses – especially in small 
animals such as insects. Yet animals do spatially-invariant 
learning and pattern recognition very well. For instance, 
bees rapidly learn and use flower patterns. 

Wave storage of spatial information offers an alternative to 
neural steering  [Worden et al 2021]. It is fundamental to the 
wave model that both for input to the wave (of sense data) 
and output of the wave (e.g. to pattern recognition modules) 
neurons need to couple to the wave selectively, being 
sensitive only to a small range of wave vectors. Each neuron 
may be like an antenna immersed in the wave. It is selective 
for some wave vector if its dendrites contain small 
transmitter/receiver units (possibly, synapses) spatially 
distributed to match the wave vector – to add together the 
peaks of the wave, possibly in a phase-sensitive manner. 

Since neurons must act as selective antennae in the wave, it 
is possible for them to act like a steerable selective antenna. 
This could happen if the phase of the contributions of 
transmitter and receiver units was controlled by a separate 
steering signal. For instance, the compound synapses or 
glomeruli in the thalamus could receive a steering signal, 
which alters their receptive properties. 

For spatial steering and binding, a neural synaptic 
architecture appears to be complex and inefficient, and to 
have severe difficulties of scaling. The wave architecture 
requires novel capabilities to make steerable neural 
antennae, but is simpler and avoids the severe scaling 
problems. 

In an analogy, the superior scaling of the wave model is like 
the benefit of radio over wired telegraph. Far fewer 
connections are needed. 

10. Evidence for Wave-based Spatial 
Memory 

This section brings together the main pieces of evidence 
related to the wave hypothesis of spatial memory. 

1. Animals move skillfully and recognize objects in 
the space around them; so it appears that they have 
accurate internal models of 3-D space - almost as 
precise as can be built from their sense data. 

2. An object tracking computation can build a precise  
3-D model of local space, almost as good as the 
best Bayesian model that can be built from sense 
data. Tracking is a good candidate for how animals 
do 3-D spatial cognition. 

3. In spite of the great importance of spatial cognition 
for fitness and survival, there are no working neural 
models of 3-D spatial cognition. This is a serious 
challenge for neuroscience – especially in insect 
brains, with fewer than 1 million neurons. 

4. Neural spatial memory is too slow and imprecise to 
support the tracking computation, or other models 
of spatial cognition. 

5. Wave storage of spatial information can give high 
precision, fast response times and low spatial 
distortion. A wave is precise enough to support the 
tracking model. 

6. No such wave has been observed in the brain, but 
it has not been looked for; if it exists, it may have 
very low amplitude which is hard to detect. 

7. The central body of the insect brain has a 
remarkably preserved shape across all insect 
species, and its round shape is well suited to hold a 
3-D wave excitation. 

8. The insect central body has all the connections 
required for spatial cognition and multi-sensory 
integration. Significantly, it has few links to 
olfaction, which is not usable for fast spatial 
computation. 

9. The size of the central body is constant within a 
factor 2.5 over a range of 40 in insect brain 
volumes, consistent with the hypothesis that it 
holds a wave representing space, to the resolution 
of insect vision. 

10. The mammalian thalamus has a remarkably 
preserved shape across all species, and its round 
shape is well suited to hold a 3-D wave excitation. 

11. Without a wave excitation, the neuroanatomy of 
the thalamus does not make sense. The same neural 
computation would be possible if thalamic nuclei 
migrated out towards cortex, saving net axon length 
and saving energy consumption. 
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12. The mammalian thalamus has all the connections 
required for spatial cognition and multi-sensory 
integration. Significantly, it has few links to 
olfaction. 

13. The shell-like form of the mammalian TRN only 
makes sense if the thalamus holds a wave. 

14. Spatial steering and binding is an essential function, 
but there are no neural models of it with acceptable 
scaling. A wave model can do signal steering with 
good scaling. 

15. The insect central body and the mammalian 
thalamus are both ideally placed for sensory signal 
steering, as the hubs of nearly all sense data. 

16. Complex synapses in the insect central body and 
the thalamus are consistent with a wave-based 
signal steering role. 

These three groups of evidence – concerning memory 
performance, the insect central body, and the mammalian 
thalamus – imply that the wave hypothesis merits further 
investigation. 

The list brings out the many parallels between the insect 
central body and the mammalian thalamus. 

11. Conclusion: Twin Tracks for Research 

Spatial cognition is the primary cognitive function, required 
before any other function of a brain. Animals move, and 
they need spatial cognition to control their movements, at 
every moment of the day. There has been extreme and 
sustained selection pressure over 500 million years to do it 
well, and animals do it very well. 

Given the primacy of spatial cognition, it is remarkable that 
there are essentially no working neural models of it. I have 
suggested a reason for this – that neural spatial memory has 
neither the precision nor the speed to support spatial 
cognition, as well as we know animals do it. I have proposed 
an alternative, that spatial memory is held in a wave 
excitation, in the insect central body or the mammalian 
thalamus. 

There are then two alternative hypotheses; either that spatial 
short-term memory is held in neural firing rates, in some 
way we have not yet thought of, or that spatial memory is 
held in a wave. This suggests a twin-track research agenda, 
to explore the two hypotheses in parallel. 

I have little to say about the first track, of finding better 
neural models of short-term spatial memory. I have outlined 
the difficulties facing a neural spatial memory model; others 
may devise solutions better than I can. This is a worthwhile 
research agenda, whether or not it succeeds. If it does not 
succeed, it will at least clarify the nature of the roadblocks, 
showing the way to better models of spatial memory. 

Both research tracks can benefit from experimental work to 
measure the quality of animals’ internal 3-D models of local 

space – especially in small animals such as insects. I suggest 
that motion detection is a suitable task to measure the 
quality of the brain’s 3-D model of space, for instance in 
bees. 

The wave hypothesis of spatial cognition raises many 
questions of biophysics. The core question is: what is the 
physical nature of the wave? A related question is - why has 
a wave in the brain not been detected already?  

A wave may not yet have been detected because we have 
not known how to look for it. There is a second reason. The 
wave would be expected to have evolved in the direction of 
smaller intensity, to reduce its energy consumption. We 
know that neurons can detect physical excitations at very 
low intensities – down to the level of one photon, in the 
case of light. So we expect a wave in the brain to have 
evolved to have extremely low intensity. This makes it very 
hard to detect – much like the neutrino, which was only 
detected many years after it was predicted; or like dark 
matter, which is still not identified. 

Direct attempts to detect the wave may not be the first 
priority, until we know more about its nature. There are 
other possible lines of investigation: 

• To look for genes expressed specifically in those 
parts of the brain, such as the thalamus or the insect 
central body, which may hold the wave 

• If there are genetic correlates of the wave, explore 
the physical properties of the proteins  they encode  

• Study the ultrastructure of those parts of the brain, 
comparatively across more species, to analyse the 
differences from other brain parts which are not 
candidates to hold a wave. 

• Make computations of brain energy budgets, like 
the ‘exploding thalamus’ analysis of section 10,  
using connectome data to make them more precise, 
to check whether a wave is necessary to account for 
the shapes of these brain parts. 

• Investigations can be widened to other phyla, such 
as arachnids, birds and reptiles. 

• Studies of the insect brain may be particularly useful 
because of its greater need for compactness, 
simplicity and efficiency. 

If the wave hypothesis were confirmed, it would be a 
paradigm shift in neuroscience, leading to fertile new 
avenues of research. That chance makes it worth a bet. 
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